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ABSTRACT 

A comparison is made between  the  stability  propertics of the norl-divergellt m d  divclrgent one-pr:trnetc>r nlodels. 
It is show11 that  the  introduction o f  divergcnce in the ow-pararnetcr rrlodol reduces t h o  rate of growth of unstable 
disturbances  arid confines the  instability  to a more narrow band of wavelengths. 

Changes in zonal rrlornenturn, momentum  transports, : 1 1 1 d  energy corlvc>rsions lx>twc:cn nlean flow kinetic ewrgy 
and  eddy  kinetic  energy  are  investigated  in  the  linear  case, :is well as by ostended  integrations of thr  spectral form 
of the  prognostic  equations  allowing  only a few wave numbers. 

Long-term  variations  in  barotropic flow, where  the flow is initially  st;lble, are investigated  using t,lw spcctral 
formulation, but allowing only as 1nany wave  numbers  as arv nwcied t o  investigate  variations  in thc profile of t.he 
xot~al  wind. 

The  stability of barotropic flow has been investigated 
in solile detail  in  earlier  studies,  notably  by Kuo [8] 
: L I I ~  Eliaserl [7]. The extensive use of the barot'ropic 
model in operational  forecssting has caused a continuing 
interest in the  performance of t'his mxlel. Certain 
modifications have been introduced  in  the  forecast equil- 
tions to  alter  the  forecasts of planetary waves.  These 
senirmpirical corrections  are described by Cress1n:m 
[5]  and Wiin-Kielsen [17]. The so-called divergent 
burat'ropic model is probably going to  be used in opera- 
t,ional forecasting  for  some  time  to come. I t  is therefore 
of int,crest  to study  the  stability of disturbances  in this 
~noclcl and  to  comparc  the  results  with  the corresponding 
results for the  non-divergent, one-pararnet'er rrlodel. 
The first part of this  paper is concerned with  such a study. 

There  has  been recently a11 increasing interest  in tlw 
performance of the numericttl  prediction  models whrn 
they are  integrated  over cxt'ended  periods ef time up to 
several days, weeks, or even  rnonths.  Thompson 1151 
has developed a heuristic  theory of long-period  velocity 
vari:ttions in  barotropic flow. It was especially shown 
from t'his theory  that  intense  jet st,reaIrl rnaxirna h v e  
:t t,endency to  split  into two maxima  traveling t'oward 
the north  and  the  south, a situation which seems to be 
characteristic of certain  types of atmospheric flow con- 
nected with blocking.  Lorenz [9] hcts shown how the 
burotropic vorticity  equation  can be reduced  to a nmxi- 
mum simplification and has investigated  the extended 
time-integration of such a model. The same approach 

rate of heating 
Saltzmun [14] lvas investigated the non-linear intcr- 

action  betwecn the zonal flow, large-scale, and srnall- 
sc;alc disturbances by t t n  extended  integration of the 
I-lttrotropic vorticity  equation  using LL limited  number ol' 
Fourier c*ornponents. 

The general  circulation  cxpcrimcnts perforrued by 
Phillips [I21 deul with un integration of t'he  two-parameter, 
qu:Lsi-geostrophic rnodcls over ext'ended periods including 
adiabatic clffects and frict'ion.  Extensions of Phillips' 
work to more realistic lrlodels based on the primitive 
cquations and having  a  greater  vcrtical resolution in 
trtldition t'o more  realistic  lleat'ing :~nd frictional effects 
are underw:lJ- in different, rcsetmlr groups. 

The second part of t'his paper will dcscrihe the varia- 
tions in the flow of a barotropic fluid on a large  time  scale. 
We shall  be  concerned partly wit'h a flow which is initially 
unstable, and part'ly  with a flow which is initially  stable. 
Integral  quantities  and  their  variation in time will beg' 71ve11 
bccausc we arc not interested  in the details of t'he  in- 
dividual  disturbances. The changes  in the profile ol' 
the  zor~ttl  wind, the 1r~omenturn  transports, tmd the 
energy conversions  between the  kinetic energies of the 
111ctm zonal flow and  thc  disturbances will be reproduced 
in detail. We shall use a simplification of the baro- 
tropic  vorticity  equation €or these  purposes of a type 
similar to Lorenz's minimum form, but  shall allow only 
as 1 n a r 1 ~ -  wvt~ve components as arc needed to describe :L 
zonal wind profile which has ut least  two mnxiln:t. 

I 

was used by Bryan [3] to  perform  experiments  with a 2. STABILITY  STUDY OF THE  DIVERGENT, 
simple baroclinic  model  dealing  wit'h thr different  regimes ONE-PARAMETER  MODEL 

~. 

" 

'Present affiliation:  National  Center for Atmospheric  Iteamch, Bouldcr, Colo. The prognostic  equation  for the  divergent', one-paranl- 



eter model will be given in  the form: 

where p' is tleternlined by the expression: 

The not,:ttions have t'he following meaning: II. is the 
stream function, V=kXV+ the  horizontal  non-divergent 
wind, k tt vertical unit  vector V2=b2/dx2+d2/dy2 t'he  two- 
dinlcnsionnl Laplacian, and f the Coriolis pttrarnetcr. In  
equation (2.2) .=-(ale) depp is a measure of static 
stfnbility,fo a standard  value of the Coriolis p:Lrumcter, and 
A ( p )  is  the  empirical  function  describing the verticd 
vnriatiorl of the  horizontal  wind  around the level wl1rl.o 
the  vorticity  equation is applied (500 rnb.), :kccording to 
the :tssutnption 

V(s, ? / . y >  ~)=A(P)VS(~ ,  Y, t ) .  (2.3) 

The subscript 5 has been dropped  from the start  in 
equat,ion (2.1). A derivation  leading to  this  particular. 
form of the  prognostic  equation has been  given hy  Wiin- 
Nielsen [ 171. 

In the first part of this  section we shall  consider tlis- 
tnrbanccs on a zonal flow in a region boundetl to  the  north 
and sout,h by rigid  walls. We  shall  divitlc any (Inantit?- 
into  its zonal mean and deviations from the  zonal tncans 
For an arbitrary  quantity we writ,e: 

a=Z+a' 
wl1ere 

I, is ttlc largmt possible wavclt~ngtl~. 

terms we may  derive the following equation : 
When we substit'utc  in (2.1) and neglect second ortlcr 

When we substitute (2.7) into (2.6) wc can write t l l r  

latter  equation in the form : 

(Z-c) ~ ~ - $ a ] + [ c - ( @ + ( 1 4  ( P i i  1 a!=o. (2.8) 

The general  eigenvalue  problem to find I'or which 
connected  values of' u and c there exist solutions to  
equation (2.X), will not be treated in this paper,  but wc 
shtdl restrict  ourselves  in t'llis first analytitwl tret1tmcnt 
to it11 initial zor1:tl wind profile ol the  type 

(2.9) 

lntrrprcting D :IS the  distance bet'wcen the walls W P  
consider :t profile where u=0 at  both walls and 11:~s H 
value u=211 for y=D/2 ,  i.e., in the  center ol  the  chunnel. 

We shall  in  the following use :tn expansion of' t h r  
fmrct~iorr a=a! (!I) in the form: 

a!(y)=): a!, sin (n\?y) 
N 

11= 1 
(2.10) 

wl~ere X=r/Il. The expression (2.10) for  the  meridiond 
dependence ol' t'he pert,urbat,ion  stream  function is  chosen 
i n  such n way that #' >tlw:L.vs disappears a t  the northern 
and  southern bound:tries of' t,he  region. The meridion:d 
velocity  component u=v' will therefore also vanish at  the 
boundaries, and the boundary condition  corresponding to 
rigid walls is tl~rref'ore :~utom:ltic:~ll~- satisfied. 

The expression for a! (y) is insert'ed in equation (2.8) 
:tnd we obtain after reduction a set' of linear  homogeneous 
equations which w n  be used to determine the possihlc 
v:dues ol c and the  ratios between the values of an. ' I 'IIP 
resultirrg sct' of equations may be written in the form: 
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FIGURE 1.-The imaginary  part, c;, of the  solution  to  equation 
(2.13) as a function of the zonal  wavelength for a maximum 
meridional  wavelength of 4000 km., B=30 m. sec.-l Curve (1 ) :  
8=0, @=O;  (2): @=pt5, p = O ;  (3): @=Dts, q2=0.5X10-12 m.?; 
(4): /??=Bas, q2=l.0X10-12 m.+; (5): @=/??a5, q2=1.5X10-12  m.-2. 

the  linearized  equation (2.8) in  the  center of the channel 
and  midway  between  the  center  and  the wall.  Merid- 
ional derivatives  are  replaced  by  finite differences. It is 
a matter of convenience whether  one or the  other pro- 
cedure is used. 

The possible  values of c are now determined  from  the 
condition that  the  determinant of the  system (2.12) has 
to  vanish  in  order  to  have  non-trivial  solutions.  This 
condit.ion  leads to  the  equation: 

+1/4B2(5p4-3X4+50p2X2)]=0 (2.13) 

The frequency  equation (2.13) has  been solved  nu- 
merically for a  number of cases. These cases  fall into 
different  series. For each  value of the maximum,  merid- 
ional  wavelength (27r/X) it was  decided to  vary  the zonal 
wavelength (L=27r/p)  in each  series  keeping p constant. 
The effect of /3 and of divergence was tested  by keeping 
p=O and p=O in  one series of computations.  The 
results of these  computations  are  given  in figures 1, 2, 
and 3. 

The maximum,  meridional  wavelength  in the com- 
putations  illustrated  in figure 1 was 4,000 km. and  the max- 
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FIGCRE 2.-The imaginary  part, ci, of the  solution  to  equation 
(2.13) as a function of the  zonal  wavelength for a maximum 
meridional  wave  lengt,h of 6,000 km., B=30 m. sec-1  The 
curves (I), (2 ) ,  (3), and (4) as  in figure 1. 
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FIGURE 3.-The imaginary part, c;, of the  solution  to  equation 
(2.13) as a function of the  meridional  wavelength for a fixed 
zonal  wavelength of 5,000 km., B=30 m. sec.-I The curves (l), 
(2), and (3) as in  figure 1. 

imurn  zonal  speed in  the  initial profile 60 In. sec." (B= 
30 m. sec."). This case  corresponds  to  a  rather  narrow 
intense  jet  stream.  The abscissa in  the figure is the zonal 
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waveIength in  the  unit of thousands of krn., while the ord- 
inate is the  imaginary  part of the wave  speed: ci. The fig- 
ure  contains five  curves  corresponding  to the cases: (1) 
8=0, p=O; (2) P=P451 q = O ;  (3) P=P45, q=0.5X10-'2m.-2; 
(4) 8=P45, q=1.0X10-12m.-2;and (5) P=p45, q=1.5X10-'2 
m.+ 

It is seen by comparing the two first cases tshat  the P- 
effect has  a  stabilizing  influence on  the  perturbations  in  the 
sense that  the  magnitude of c i  is smaller  for P # O  than  in 
the case P=O and also that  the  band of zonal  wavelengths 
for which instabiIity occurs is more  narrow  for' P # O .  
By comparing the first  two  cases  with the  last  three it is 
furthermore  seen that  the effects of q, which  measures 
the  intensity of the divergence  implied by  the model,  are 
to  further decrease the  instability of the waves  in  the 
model. The  divergent,  one-parameter model is therefore 
more  stable  than  the  non-divergent  model. 

The results are verified by figure 2, which  contains 
similar  calculations  with the maximum,  meridional  wave- 
length at  6,000 km. The  important new information 
contained  in  this figure is that  the waves are  more  stable 
when the meridional  wavelength is increased. For D= 
6,000 km. it is seen that all  wavelengths  are  stable  in the 
case of P=P45 and q=1.5X10"2m.-2 and  only  the waves 
in a  narrow band  around 4,000 k m .  are  unstable for 
P=f145 and q=1.0X10"2m.-2. Figure  3  contains  curves 
giving the  imaginary  root as  a function of the meridional 
wavelength for  a fixed value of the zonal  wavelength, 
L=5,000 km. 

The information  contained  in  figures 1, 2 and  3  may 
also be expressed in  terms of the  time, T, it would  t,ake to  
double the  amplitude of the  unstable  perturbation.  This 
time  can  be  determined  from  the  formula 

In 2 T=- (2.14) 

where ci is the positive,  imaginary part of t'he  wave  speed. 
If the wavelength L = 2 ~ l p  is expressed in t.he unit 1,000 
km., c4 in  m. sec.", and T i n  days we obt,ain 

W i  

L 
Ci 

T=1.28-- (2.15) 

The curvm  in figures 1, 2 and 3 indicate  doubling  times 
which may  be as short as 0.5 day,  but more  typically are 
of the order 1-2 days. 

The general  conclusion from  these  calculations is there- 
fore that  unstable waves are possible  even  when the &effect 
and  the divergence  effects are included  in  the analysis. 
Both of these effects have a  stabilizing  influence on  the 
waves in  the sense that  the waves  become  more stable  for 
larger  values of p and p as  they do for  larger values of the 
maximum,  meridional  wavelength. 

The general validity of the conclusions  which have been 
reached in  this  section  may  be  questioned  because  only  the 
terms  corresponding to n=1 and n=3 in (2.10) have been 
included in  the frequency  equation  (2.13). If we also 

included the next  odd  value, n=5, the result  would b e  
that (2.13)  would be replaced by a cub+  equation,  while 
the corresponding  equation  would be cf '%e fourth  degree 
if also n=7 were  included. A priori € l y e  pgssibilitypxists 
that  several  amplifying modes will be  presint  in thei solu- 
tion,  and  that  tbe  growth  rate of these modes is different 
from the one  found  in  this  section.  Such  conditions are 
found  in  the  theory of baroclinic stability  (Charney [4], 
Murray [Ill). In   the case of barotropic  st'ability,  under 
invcst'igation  here,  there  exists  a  limited  amount of infor: 
mation  regarding the higher  modes in  the paper by Eliasen 
[7], who has  found  the  roots  in  the  frequency  equation up  
to  and  including n=8. In  the case of a  symmetric, 
harmonic velocity  profile in  the zonal current  he finds for 
nS8 that  only  one  unstable  mode  exists,  and that  the 
growth rate is  the  same for 3 I n  5 6 ,  but somewhat  small- 
er for n=7  and n=8. It is therefore  likely that  the di- 
agrams in figures l l  2, and 3 contain  the essential features 
of the  stability of the quasi-barotropic flow, ahhough  t,he 
problem  needs further  investigation. 

3. SECOND-ORDER  MOMENTUM CHANGES 

It is of interest to see  what we can  say  from  the solution: 
of this  particular  perturbation problem about  the  second- 
order effects of the  perturbations  on  the  mean flow. 
Such  second-order effects on  the  mean flow  will give the 
initial  changes, but  after a  while the  mean flow will have 
changed so much  that  the  solution of the  perturbation 
problem  no  longer  applies,  which  means that  the  mean 
flow now starts  to  alter  the  structure of the  perturbations 
in a  way  radically different  from our  solution.  This 
particular  problem will be  treated  by numerical  calcula- 
tions in  the  later section. 

The second-order  changes  in the  mean flow can  be  found 
from the first equation of motion  in  a  form  applicable  to  the 
model : 

Defining now .=;I u dx  

and  writing 

G u=u+u', v=v', since U=-=O 
bX 

we obtain  from (2.14) 

(3.1) 

(3 .2)  

(3.3) 

(3.4) 

The  initial changes in  the  zonal wind can,  therefore, 
be  computed  from  the convergence of the  momentum 
transport of the  perturbations.  We  must  next  evaluate 
this  quantity  from  the  solution of the  perturbation 
problem. The general  solution  for  the  perturbation 
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stream-function  can be  written (see  equations (2.7) and 
(2.10)) :- 

# ' ( x , ~ ,  t )=  { C Y ~ ( ~ )  sin X ~ + C Y , ( ~ )  sin 3Xyj e i p ( r - r l t )  

+ (CY,(') sin X ~ + . C Y ~ ( ~ )  sin 3 ~ y )  e ' H ( z - c z t '  ( 3 . 5 )  

where c1 and c2 are  the two  solutions of the frequency 
equation (2.13) and a3(l), crl@), and a3@) are  the four 
(unknown)  amplitudes of the  wave  components  in  t'he 
solution. The amplitudes (CY) will, in  general,  be complex 
numbers if the  wave  speed c is complex. Next  let  the 
initial  perturbation  stream  function  be  given  by 

#,,'(x, y) = (A, sin Xy+A, sin 3Xy) eip. (3.6) 

We have  then  the following four  equations  to  determine 
the  amplitudes.  Two  equations  are  determined  by  the 
condition that  the expression (3.5) has  to  agree wit'h 
(3.6) for t=O,  giving: 

(3.7) 

The  remaining  two  equations are det'ermined  by  one of 
the two equations (2.12),  which has t'o be satisfied  for 
c=cl and c=cz. Using  the first of the  equations (2.12) 
we obtain 

F(c)=(l+<+<) P P  B ( 3-3 ;) (3.9) 

and 

G = i  2 (1 +5 $) B. (3.10) 

The  system (3.7), (3.8) becomes  eight linear,  inhomo- 
geneous equations when the  amplitudes (CY) and  wave 
velocity (c) are  written  as complex numbers  and  the  equa- 
tions are  separated  into  real  and  imaginary  parts.  Let 
the  wave  speeds  be written: 

cl=RSiS, c2=R"iS (3.11j 

and the  amplitudes: 

ff,(l)=Xl+iXz I 
(3.12) 

It is obvious that  the eight  quantities: X,, X,, YIJ Yz, 2 1 ,  

Z2, VI, and Vz can  be  determined  from (3.7) and (3.8) 

when R and S have been  determined  from  the  solution of 
(2.13). We  may therefore  consider  the  real  and  imaginary 
parts of the  amplitudes of the  wave  components  as  known. 
The final  expression for  the  perturbation  stream function 
may then be written: 

#'(x,y,t)=eHst { ( X ,  sin Xy+Z1 sin 3Xy) cos ~ ( x - R t )  

- (Xz  sin Xy+Z2 sin 3Xy) sin p(x-Rt) 1 
(Y,  sin hy+V1 sin 3Xy) cos p(x-lit) 

-(Yz sin Xy+V, sin Sly) sin p ( x - E t ) }  

(3.13) 

From the knowledge of the expression for  the  perturba- 
tion  stream  function it  is now a  straightforward  (although 
tedious)  comput'ation to  evaluate  the convergence of the 
meridional  transport of nlonlentum to be  used in (3.4). 
We find: 

where 
M(Y)=COS ~ X Y - C O S  2x1~.  (3.15) 

It can  be  shown that for our case we will always have 

-(X,Z~-X~Z,)=(YlV~-Y2V~)=N* (3.16) 
and 

v,x,-v,xl+z,Yz-zzY,=o. (3.17) 

Using t'his  information we may  write (3.14) in  the  form: 

---4pX2N* sinh  (2pSt) .M(y) bt (3.18) biz- 

or by  integration 

C ( y , t ) = C ( y , 0 ) - 2 7  [cash (2pSt)-l]*M(y). (3.19) XZN* 

In  the cases which have  been  t,reated numerically it 
has  invariably  shown  up  that N" is a positive  quantity. 
This  result is in  agreement  with  remarks  made  by  Kuo 
[8],  on  the basis of results  obtained  by Tollmien [16], and 
we shall show later  that we can  obtain  this  result (N*>O) 
from  physical  considerations of the energy  conversions 
between  eddy  kinetic  and  mean  kinetic  energy. 

Taking  this  result  for  granted at  the moment we can 
then find qualitatively  what will happen  to  the profile of 
the zonal wind. The  function  M(y) is plotted  in figure 4 
as a function of y/D. It has a positive  maximum  in the 
center of the channel and  negative  minima  on  both sides. 
Since furthermore [cosh  (2pSt)-l] is pbitive  for t>O 
it follows that  the  last  term  on  the  right  side  in (3.19) 
has  the  opposite  sign of M ( y ) .  We  can  therefore expect 
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FIGURE 4.-The function M(y) as defined by  equation  (3.15). 
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FIGURE 5.-The profile of the zonal  wind  initially and  a t  2, 3, and 
3.5 days  computed  from  equation  (3.19)  with B=&, q z = O ,  
zonal  wavelength  5,000  km.,  width of the  channel 3,000 km., 
B=30 m. see.-', A1 corresponds to  5 m. set.", and Az=O. 

that  the initial  maximum  in i(y,O) will be reduced  during 
the first time period after  an  integrat,ion  has  started 
while  maxima will tend  to  appear  to  the  north  and  south 
of the  middle of the channel  as  time goes on.  These 
results  are  illustrated  in figures  5 and 6, where we, in 
figure  5, have  computed  the  distribution of u(y , t )  for 
t=O, 2,3,  and 3.5 days  from  equation  (3.19).  Figure  5 was 
computed for non-divergent flow ( q = O ) ,  p=&,, a  width 
of the channel  equal to 6,000 km.,  and  a zonal  wave- 
length of 5,000 km. The  initial  maximum wind  speed 

-16 -8 0 8 16 24 32 40 98 56 64 

i (m. set.") 

FIGURE 6."The profile of the zonal  wind  initially and  a t  0.5, 1.0, 
and  1.5  days  computed  from  equation  (3.19)  with  parameters  as  in 
figure  5  except A3 corresponding to  5 m. set.? 

was 60 111. sec." and A, was chosen  corresponding to  an 
initial  meridional wind of 5  m. sec.", while A3=0. 
Figure  5  should  be  compared  with figure 6 where the 
parameters  have  the  same values  except that A, also 
corresponded to  5 In. sec." in  the meridional  wind 
component. The distribution of U(y, t )  is  only  given for 
t = O ,  0.5, 1, and  1.5 day  in figure 6. It is seen that  the 
presence of the waves on  the  smaller  meridional  scale, 
initmially,  causes  t,he  splitting of the  jet  stream  into  the 
two jet  maxima to t,ake  place at  a  faster  rate. 

Figures 5 and 6 are  very similar to  those  constructed  by 
Thompson [15] from  his  t'heory of large-scale  turbulence 
in barotropic flow as they,  indeed,  should be because the 
physical  model is the  same.  The changes  predicted  in 
the zonal profile in  our  computation  are  however,  due  to 
the presence of unstable  barotropic  waves, while Thomp- 
son's theory is based  upon the  interact'ion  between  eddies 
and  the  mean flow expressed partly  in  quantities which 
can be derived  from the  mean flow and  partly  in  certain 
stat'istical  properties of the eddies. It will be noted also 
that  the time  scale of the changes  in the  mean zonal flow 
is the  same in the two computations. It takes 2 to  3  days 
t'o  develop  two distinct  maxima  in  the profile of the  zonal 
wind  from the single maximum  present  initially  in the 
center of t'he  channel. 

From  our  calculation we may therefore  conclude that 
if we have  barotropic  instability in  a flow characterized  by 
a single maximum  in  the zonal  wind, it is a  dynamical 
consequence  caused by t'he  convergence of the  meridional 
transport of momentum  by  the eddies that  the zonal  pro- 
file will change to a  profile with  double  maximum.  This 
is done by  momentum being transported  away  from  the 
center of the channel in  both  directions  by  the eddies, 
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which in  turn  means  that  t'he  unstable  barotropic dis- 
turbances  have  a tilt of the t'rough and ridge  lines,  which 
goes from  southeast  toward  northwest  south of the  center 
and from southwest  toward  northeast  north of the  center 
of the  channel.  This tilt is  opposite  to  the  one  generally 
observed in  the  atmosphere.  This  fact  points  to the 
importance of barolinic  processes in  t'he  real  atmosphere, 
but  the experiences in  barotropic predict,ion  show that 
processes  similar to  those described in  the  present  paper 
definitely  occur. 

4. AN EXAMPLE OF BAROTROPIC DEVEL.OPMENT 

Figure  7  shows  a  section of the 500-mb.  analysis  from 
May 15, 1961 a t  1200 GMT.  The  interesting  feature on 
this  section of the hemispheric  analysis is t'he  fairly straight 
jet  st'ream  from  t'he  eastern  part of Canada over .New- 
foundland  toward  the  southeast  over  the  Atlantic Ocean. 
Notice in  particular  that  the  isot'herms  are  almost  parallel 
to  the  contours over a large  section of t'he  jet' stream.  The 
isotachs for the  map  (not  reproduced) show  a maximum 
of about 30 m. sec." over  Newfoundland  with  a  drop t'o 
less than 10 m. sec." on both sides  in a distance of about 
1,000 km. 

18 also  for 1200 GMT. Between May 15  and 16 a devclop- 
ment took place  along the  jet  st'ream over  Newfoundland. . 
The  center of the  circulation  was  located  approximately 
at  4 5 O  N., 35' W. on May 16,  1200 GMT. Notice  againon 
figure 8 that we find no regions of strong  t'emperature 
advection.  During the following day  the  number of 
closed contours  around the cent'er  increased,  while  the 
Low drifted  slowly  toward  the  southeast  with  a  posit'ion 
at  43' N., 30° W. on May 17,  1200 GMT. The Low re- 
mained  almost stationary  during  the  next 24-hour  period 
with  a  slight tendency  toward filling. 

The  forecasts  made  with  the 500-mb.  operational  model 
from the  initial  data a t   May 15, 1961 a t  1200 GMT are 
shown in figures 11, 12, and 13. The 24-hour  forecast 
(fig. 11) shows that  the  barotropic model  forecasted  the 
development of a  closed  circulation. The  center  located 
at  approximately 50° N., 35' W., is too far to  the  north. 
However, the  barotropic  development  continued  in  the 
forecast  between 24 and 48 hours  and  the  circulation is 
centered a t  45' N., 29' W. in the 48-hour  forecast.  The 
72-hour forecast  shows  a  further  increase  in  the  number 
of closed contours,  but  the  center  has now  moved too far 
toward the  east. 

The initial  jet  stream  has been  divided  into  two  branches 
on the observed maps  and on the forecasts. Toward  the 

eastern part of North America. This  current divides into 
two branches,  one  going  toward  the  northeast  over  the 
southern part of Greenland, the  other  bending  toward  the shows  therefore  a  great  similarity  to  those  predicted by 
southeast  and  continuing on  t,he southern side of the Low, the  linear  theory.  This  type of barotropic  development 
which  was developed in  the  Atlantic. is observed frequently in barotropic  forecasting  and  results 

The  development of the flow pattern in the example  usually  in  cold, cut-off cyclones.  However, it is not  the 

Figures 8, 9, and 10 show  analyses  for May 16, 17, a1ld FIWRE 7.-500-mb. analysis for May 15, 1961, 1200 GMT. Solid 
lines are contours and  dashed  lines isotherms. 

end Of the period we find a broad current Over the FIGITRE 8.-500-1nb. arlalysis for May 16, 1961, 1200 GMT. 



468 MONTHLY WEATHER  REVIEW NOVEMBER 1961 

F ~ ~ u ~ ~ ~ 9 . - 5 0 0 - m b .  analysis for May 17,  1961,  1200  GMT. 

FIGURE 10.-500-mb. analysis for May 18, 1961,  1200 GMT. 

most  frequent  type of development  in  the  troposphere. 
The baroclinic  developments  associated  with well devel- 
oped  divergence fields are  the more  common. 

It is interesting  to  note  that  Murray [ll] in a recent 
investimtion of baroclinic stability of stratospheric flow, 

FIGURE 11.-24-hour one-parameter  forecast  starting from May 
15,  1961,  1200 CMT. 

especially the breakdown of the polar  night jet located 
close to the 25-mb. surface,  indicates that  the polar  night 
jet is baroclinically and inertially  stable. He suggests, 
therefore, that barotropic  instability of the type discussed 
here is responsible for  the  breakdown of the polar  night 
jet'. This result is contradicted  by  the conclusions reached 
bJ- Boville [2] who states  that "baroclinic  wave  develop- 
ment, fulfilling instability  criteria  and  energy conversions 
cf the Fleagle  t'ype  appear  to  have been identified  down 
to wave  number four." The difference in  the  results of 
t'llc two  (independent')  studies  can  probably  be  ascribed 
t3  the different models which were adopted,  but it is 
bt.yond the scope of this paper to resolve the  question of 
the  stability of the polar night  jet. 

5. ENERGY  CONVERSIONS 

We  shall  next turn our  at'tention t'o the  energy conver- 
sion  between  mean zontd kinetic  energy and  eddy kinet'ic 
e;lergy, the only energy conversion which is possible in  the 
m ~ d e l ,  if p=O; i.e., no divergence. The prediction  equa- 
tio.1 is in  this case 

b;.iat+V*7{fpv=O. (5.1) 

When we divide  each quantity  into  its zonal  mean 
value  and deviat'ion  from the zonal mean  value  and  intro- 
duce t,hese expressions into (5.1) we obtain  the following 
equation for the  average flow: 

by/& + m = o  (5.2) 
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FIGI-RE 12.-48-hour one-parameter  forecast  starting  from Mxy FIOYRE 13-72-hour one-parameter  forecast  starting  from May 15, 
15, 1961, 1200 GMT. 1961, 1200 GMT. 

This  equation may also be w-ritten in t'lle form: because b2$/bybt=-bu/bt=0 a t  both boundaries a t  all 
t'irnes. It' is seen from (5.9) that we obtain  t'he  change in 

because grating  over the width of the  channel.  This procedure 
bT!bt = b?(Z) /bIJ2  ( 5 . 3 )  kinetic  energy by multiplying (5.3) by and t,hen intme- 

leads to 

(5.11) 

The-last t'erm is,  however,  zero,  because 
It is the11 natural  to define the follow-illg expression as 

the energy conversion between eddy  kinetic  energy arid 

a -, lneitn kinetic  energy : 

d7J (u' $)" (ut ( 5 . 7 )  - 
!Kf.K,":Jo u - bu"' dy. (5.12) 

K=S J. ; u2dS=& - (gpy (5.8) tively  correlated  with  ttlc convergence of rnonlentum 

The mean  kinetic  energy per unit mass and unit  area 
may  in  this model be writ't'en  in the  form: The general expression for energy conversion in isobaric, 

- non-divergent flow shows that if the  zor~al wind is posi- 

transport  there is a conversion from eddy kinetic  energy 
from  which it follows that'  to t'hc mean flow kinetic  energy, while negative correla- 

tions  between the two quantities givc the opposite 

The energy conversion (5.12) will now be evaluated for . dE dt -DL 1 %%(=) 35 b 3 5  dY=-& 1 * z d y >  (5'9) 
- b? conversion. "_ 
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the  amplifying  barotropic  wave  according  to  t'he  analysis 
made  earlier in this  paper.  Rest'ricting ourselves t'o this 
part of the  solution we find t,hat  the convergence of 
momentum  transport is given by (3.14) 

When we subst,itute t'his expression together  with  t'he 
expression (2.9) for E in (5.12) we find after  evaluation of 
the  integral 

{K/.$?] =~X2Be2~S1(X1Z2-X~Z1)=-~X2BeZ~S1N*.  (5.14) 

The  last expression gives us  the sign of the  quantity N * 
which  was introduced in (3.16). The  eddy  kinetic  energy 
of the  unstable  barotropic  wave  can  only  increase  as a 
result of the conversion of energy  from  the  kinetic  energy 
of the  mean flow. The  energy conversion {K'.E} is 
therefore negative, which means  that N*= - (X,Z2 
-X2Zl )  must be positive. The sign of N* was of vital 
importance for the discussion of the  changes in the zonal 
wind profile carried out earlier in the  paper. 

It should  be  noted that  the expression (5.14), on  which 
we have  based  the conclusion t'hat N" is positive,  is 
evaluated  without  regard  to  the  second-order  changes in 
the zonal momentum.  The expression (5.14), applies 
therefore  only for a  short  interval of time  initially, a f%ct 
which  does not  destroy  the  argument.  The  importance 
of the  higher-order  changes in the  energy conversion and 
the  question of when  the  non-linear effects become signifi- 
cant will  be investigated a t  the  end of section 6. 

It is obvious that t'he  linearized  treatment of the  baro- 
tropic  problem can  describe  the  development of the pro- 
file of the  zonal  wind  and  pert'urbations  only  up  to  the 
time when there is considerable  interact>ion  between  t,he 
two parts of the  motion.  This  is seen directly in t,he 
expressions which  we have  derived for the  change in the 
zonal wind (3.18) and  the energy  conversion (5.14) which 
will predict  changes  which  tend  toward  infinity  wit'h 
increasing time. 

From  energy  considerations i t  is equally  obvious that 
the source of energy for the  perturbation,  i.e.,  the  zonal 
available  kinetic  energy,  is  finite,  and that  the  growth of 
the  pertubation  therefore  must  stop  after  a while, and  t,he 
energy  conversion must  change  sign.  The  non-linear 
interactions which are  necessary for such processes can 
only  be incorporated by  integrating  a  more  complete  form 
of the  prediction  equation.  Lorenz [9] has  recently shown  a 
simplification of the non-linear  vorticity which  enables 
us  to  retain  the  non-linear  interaction  by  restricting  the 
fields to a  few wave  component's.  An  integration of this 
type will be described in  the  next  section. 

6. EXTENDED  TIME INTEGRATIONS OF BAROTROPIC 
FLOW 

The  extended  time  integration of the  barotropic 
equation was  carried  out  for  two  reasons. It was de- 

sirable  to  investigate  the  validity of the  results  obtained 
from  the  linear  analysis,  and  the change,s in tjhe  zonal 
profile, the  momentum  transport,  and  the  energy  conver- 
sions could  be investigated  as  a  function of time in a  more 
general case. The  integration  can  be considered as  an 
extension of Lorenz's [9] original  inte-ation,  which  was 
made  with  equations which  were simplified to a  maximum 
extent.  Guided  by  the  results which we have  obtained 
during  the  linear  anaIysis we shall  formulate a system 
which is  general  enough  to allow  double  maxima  in the 
zonal wind profile, but simple  enough to give  a  very 
efficient computation. 

The  form of the expression for t'he  mean  zonal wind 
(3.19) in  the  linear case suggests that  an expression of the 
form : 

P 

Z(?J, t ) = B ( t ) f C ( t ) " B ( t )  COS (ZAy)"C(t) COS 4Xy (6.1) 

may be used with  advantage in the numerical  experiment. 
The  family of curves described by (6.1) for  different  val- 
ues of B and 6 can  vary  between  strong westerlies in  the 
center of the  channel  with  easterlies  near  the walls and, 
011 the  other  extreme,  strong westerlies near  the walls 
with  easterlies  in  the  center of the  channel.  The  pre- 
dicted  values of B and C from given initial  values will 
therefore  show  the  changes  in  certain  types of zonal  wind 
profiles predicted  from the  barotropic  equations.  The 
stream  function  corresponding  to  the  mean  zonal wind 
(6.1) is: 

where D is  the  width of the  channel  and  the  constant of 
integration has been determined  in  such a way t,hat. 

The solution (3.13) for  the  perturbation  stream  func- 
tion  suggests, on the  other  hand,  a  prescribed expression 
for this  quantity of the following form : 

q (D, t )=O.  

which allows one  wave number ( k )  in the  zonal  direction 
and  two  wave  numbers (X and 3X) in  the  meridional  direc- 
tion. The complete  stream  function is then given by  the 
expression 

4% Y, t> =i& t> ++'(x, Y, t )  (6.4) 

Now (6.4) can  be  substituted  in  the  vorticity  equation 

in which p=dj/dy is  considered to be  a  constant,  and we 
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can by the technique  developed by Lorenz [9] transform Q=- x' R=- P 
(6.5) into six forecast  equations  for  the six amplitudes: 
B, C, E,, E3, E ; ,  and F3, which are  functions of t'ime  only. 
With the  notations : the six forecast cquations for  the  amplitudes  are: 

k2' k" (6.6) 

We  notice  from the first  two expressions in (6.7) that 
B+ C= -W0= const. (6.8) 

This  result could have been derived :L priori because it 
simply expresses the  fact' that  total zonal nlon~entunl of 
the  system is conserved. 

It' has been shown by Lorcnz [9] that  the simplified 
barotropic  equat'ions  (6.7) conserve the kinet'ic  energy m d  
the square ol t'he  vort'icit'y wllen these quantities are 
integrated  over  the region. I t  should be  noted  that  the 
kinetic  energy and  the  square of' t'tle vort'icity  are  evaluated 
as the sum of the  contributions  from  the conlponcrlts 
which  itre included in  the lorecnsts. 

The  kinetic  energy  per ullit' area is in  our case evalutlted 
from the expression. 

(6.9) 

We introduce t'he expressions (6.4), (6.3), and (6.2) in 
(6.9) and  obtain  after  evaluation of t'he  int'egrals 

K=Z (B+C)'+q (B2+C2) +- ___ 
1 1 

8 K 2  X2+K' (E,2+F?) 

+ S T  19X2tK2 (E3'+F3'). (6.10) 

A direct proof that' t'he kinetic  energy is conserved  can be 
obtained by  differentiating (6.10) with  respect  to  time 
and subst'ituting  from  the  sptenl (6.7). This  cornputa- 

tiorr was carried out as a check 011 the derivation of the 
system  (6.7) 

Let 11s further define the 111e:tn square of the  vorticity 
by the forllllllR 

(6.11) 

Substituting  again from (6.4) in (6.11) we obtain  the 
following expressioll for V: 

V=2X2B2+8h2C2+- -7- (E;'+Ii;') 1 (x2+k')' 
4 k  

Again we can o l  course obtain a direct proof t'hat' V as 
expressed in (6.12) is indeed  conserved. The t'wo con- 
served  quantities, K and I ,  can be computed  in  each  time 
st'ep  during a numerical  integration of the  system  (6.7). 
If t,lley are conserved during  the  integration,  or a t  least 
show no trend  lor  systematic increase,  decrease, or violent 
fluctuations, we have a good check on the behavior of the 
numerical  int'egration especially  wit'h  respect to  truncation 
errors.  Such :t check  was introduced  in  the numericttl in- 
t'egration to be  described  lttter in  this  section. 

I t  is one of the  purposes of t'he  numerical  integration to 
investigate  the energy  conversion  between mean  kinetic 
energy  and  eddy  kinet'ic  energy  during an extended  period 
of integration. We  need  t'herefore to  evaluate t'he formula 
for  t'his  energy  conversion  in  our simplified model. This  is 
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accomplished by  a  substitution of (6.4)  in  (5.12) 
which we obtain 

{K'.zI}=- (B-C') .(E,F3"E3Fl). ( 
x 2  

k 

from 

6.13) 

The energy  conversion  (6.13)  was computed in each time 
step during  the  numerical  integration. 

We shall  next  return  to  the  fact  that  the  total momen- 
tum of the  fluid is conserved as shown in (6.8). This con- 
servative  property  puts  a  constraint on the  amount of 
zonal  kinetic  energy  which  can be released  to the  perturba- 
tions,  as  shown by  Platzman  and  Baer [13]. We may, in 
other words,  consider the  total zonal  kinetic  energy  as 
composed of two  parts:  the available  zonal  kinetic  energy 
and  the  unavailable  energy. It is easy  to  evaluate  t'he  two 
quant'ities  in  the  simple model  used in  our  experiment's. 
The zonal part of the  kinetic  energy is, as can be seen 
from  (6.10), 

1 
2 E,=- (B+C)'+Z (B2+C2) .  1 (6.14) 

We can combine  (6.14) with (6.8) and rewrit'e  (6.14) in 
the  form: 

E,=- Mn'+- B(B"M0) 3 1 
4 2 (6.15) 

from which i t  is seen that 

6E,=( B-z 1 M,,) 6B. (6.16) 

E, is therefore a t  a  minimum if B=j$ Mn in which case we 
also have C=SMo. In  our case there exists  therefore tt 
particular profile of t'he  zonal  wind,  described by (6.1),  for 
which the zonal  kinetic  energy  is a t  a  minimum,  namely 
the one for  which B= C. The minimum  value of the zonal 
kinetic  energy is evaluated from  (6.14)  with B=C=):Mn 
and is 

(6.17) 

This is the  unavailable part  of the zonal  kinetic  energy. 
Only 3/8 of the  initial  momentum  squared is therefore 
available for conversion to  eddy  kinetic energy. Sub- 
tracting (6.17)  from (6.15) we can evaluate  the  available 
zonal  kinetic  energy. It becomes 

E,,a,,,=gMOz--BC=- 1 1 1 (B-e)'.  
2 8 (6.18) 

We  notice  here that if B=C=2M0 we get  no  available, 

zonal,  kinetic  energy. It should  further  be  mentioned 
that very  large  values of zonal,  available  energy are ob- 
tained  in the case that Mn=O, which means that B= - C, 

in which case E,,.,,=2B2. We  shall  illustrate  later  by 
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FIGLRE 14,"Case 1 .  The zonal velocity as a function of time  and 
meridional  distance  over  one  period.  Initial  parameters: Bo= 
30 m. set.", C , = - l 5  m. set.", Elo=25 In. set.", Edo=Flo= 
Pso=O, o=pls ,  width 3,000 km., zonal wavelength 5,000 km. 

the  results of the  actual  calculations  that  very large 
changes  in the zonal flow take place  in this case. 

Numerical  integrations of the  system (6.7) have beer1 
carried out in a number of cases. In  the following we 
shall  describe some of the more  interesting  results.  The 
integration was  performed  using central  finite differences 
in  time  except  initially,  where  one  uncentercd  step  was 
taken.  The  time  step  has been 1 hour  in  all the calcula- 
tions.  We  shall treat  four different cases. The calcula- 
tions were in  all  cases  carried out  to 24 days (576 time 
steps),  but since  all  t'he computations  turned  out  to be 
periodical we shall  usually  illust'rate  only  a shorter  time 
period. The finite difference system  in  time was tested 
by  computing  the  kinetic energy  per unit  area  and  the 
square of the  vorticity  per  unit  area.  These  quantities 
showed only  small  fluctuations  during the complete  inte- 
gration,  indicating that  the finite difference system used 
in these  calculations is good enough  even  for  extended 
integrations  with  the  present  system. A short descrip- 
tion of the results of four  integrations follows. 
Case I: As the first  example we have selected a case 
where the  initial flow pattern is barotropically  unstable. 
The zonal  wavelength  was  taken to be 5,000 km.  and  the 
width of the channel  3,000  km.,  corresponding  to a maxi- 
mum meridional  wavelength of 6,000 km.  The  quantities 
B and C were selected  initially at 30 m. sec." and -15 
In. sec.", respectively,  giving  a  zonal wind profile with a 
single  maximum  in the center of the channel of 60 m. sec." 
The profile has also weak  easterlies close to  the walls with 
a maximum  easterly  wind of about 7 m. sec.-l The 
initial  disturbance was defined by  putting E, =25  m. sec.", 
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FIGURE 15.-Case 1. The zonal kinetic  energy as a fuuction of 
time  over  one  period  (upper  curve,  right  scale).  The  energy 
conversion between zonal and  eddy  kinetic  energy  as a function 
of time  over  one  period  (loner  curve,  left scale). 

while E3= F,= F3=0 initially. The  disturbance defined 
by these  values  has a south-north  direction of the  trough 
and  ridge  lines  and  has,  therefore,  initially 110 transport 
of moment,um. 

The changes  which take place in t,he zonul winds 
during the forecast' are illustrat,ed in figure 14, where 
the  zonal  wind profile is shown as a function of time  in 
hours. The forecast  turns  out to  be periodic with n 
period close to 44 hours. We have  therefore  only  shown 
one  period. The initial  rnasimurn  in the zonal wind i n  
the  center of the channel  breaks down and is nft,er about 
22 hours  replaced by weak  easterlies of 2 - 4  In. sec." 
At  the  same  time  two  maxima of westerly  zonal  winds 
form  to  the  north  and  the  south of the center of the  chan- 
nel with  speeds of  28-29 m. scc.-I Aft'er 44 hours we are 
back  to  the  initial zonal  wind profile. The forecast  pre- 
dicts  therefore an oscillation in  the zonal wind profile vary- 
ing between  a  single  and  a  double  maximum  in  t'he  jet 
stream. 

The processes which determine  this oscillation are 
described in figure 15, in which the lower  curve  shows 
the energy  conversion  bet'ween  zonal  kinetic  energy ant1 
eddy kinetic  energy.  During  the first  hours of the 
forecast the energy is corlvert'ed from the zonal flow t'o 
the eddies. This conversion  reaches  a rnaxirnurn after 
about 8 hours, but remains  positive up to about 15 hours, 
when the sign of the conversion  changes  for a few hours 
and becomes zero shortly before 22 hours. The  upper 
curve  shows the  variation  with  respect  to  time of the 
kinetic  energy  contained in  the zonal flow. In agree- 
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FIGURE 16.-Case 2.  Zonal velocity  as a function of time  and 
meridional  distance  over  one  period.  Parameters  as in case 1 
(fig. 14) except C,=30 m. sec.". 

$0 44  4 8  5 2  

FIGURE li.-Casc 2. Zonal kinetic  energy as a function of time 
over  one  period  (upper  curve,  right  scale).  The  energy conver- 
sion between zonal and  eddy  kinetic  energy  as  a  function of time 
over  one  period (lower curve,  left  scale). 

rnent  with the energy  conversion  curve we find a decrease 
in  the zonal  kinetic  energy up  to 15 hours,  when  it in- 
creases slightly,  and  then a decrease  again  before it finally 
starts  to increase to  complete the cycle after 44 hours. 

We  can  compute the  amount of unavailable zonal 
kinet,ic  energy  from  t'he  formula (6.17). With .B,,=30 
nl.sec.-l and Co= - 15 m.sec." we find Mo= 15 m. set." 
The rninirnum zonal  kinetic  energy is therefore Ezz,mln= 
140.6 sec.-2 Itt is int'eresting to note  that  this is 
equal to the act'ual  minimum  on the curve  for E,, in- 
dicating that all the available  kinetic  energy  in the zonal 
flow a~ t~ua l ly  is being  released to  the perturbations. 
I t  also indicstes that very  large  amounts of kinet'ic  energy 



may  be released t'o the  perturbations if we specify  the 
initial  zonal  wind profile in  such  a  way  that  the  nlomenturn 
is small. In  order  to  test  this we computed a second  case. 
Case 2 :  In this  case we have chosen B= --('=30 r n .  
sec.", which makes  t,he  zonal  Inornentunl Mo=O. The 
unavailable  kinetic  energy  vanishes  therefore in t'his 
case, and  the  total  amount of kinetic  energy is at, t,he 
same  time  larger. I n  t,his admittedls  extreme case we 
have  again a maximum of 60 111. sec." in t'be cent'er of 
the  channel  in  the  initial,  zonal  wind profile with east,er- 
lies to  the  north  and  south of 33 In. sec." (fig. 16). The  
period in  t8he forecast8s turns  out  to  be  about 54 hours  in 
this  case. Very  violent  fluctuations  take  place  in  the 
zonal winds at  t,he  different latit,udes  in t,llis case. In 
t8he  middle of t811e period we find  east'erlies in t'hc cent'cr 
of the  channel of 55 In.sec.-l,  while the westerlies i n  t'he 
northern  and  southern  portions,  at  the  same tirlle, have 
increased in  strength  to  more  than 30 nl.sec.-l I t  can 
be  seen on figure 16 that  t'he  forecast passes through a 
state between 13 and 14 hours  in which there is 110 zonal 
wind,  a situat,ion which is found  again  between 40 and 
41  hours. 

Figure 17 (corresponding  to fig. 15  in  case  1)  shows  the 
time  variation of t'he  zonal  kinetic  energy  and  the  energy 
conversion  between zonal  and  eddy  kinct'ic  energy. 
We find as expected that  the zonal  kinetic  energy  decreases 
to zero between  13  and 14 hours  and  again between ,40 
and 41  hours. The  energy conversion  is nat~ural1~- zcro a t  
the  same  time  after  having been  positivc,  since  all t'he 
kinetic  energy  has  been  convert'ed t'o eddy  kinetic  energy. 
The  secondary rrlaxirnurn in  the  zonal  kinetic  energy  in 
the  middle of the period  where  the  energy conversion 
again is zero corresponds  to  the rnaxirnunl intensity of the 
double jet  stream seen  in  figure 16 a t  27 hours. 
Case 3: The  initial  zonal wind  profile for  this case was 
similar to case 1 in  tllc  scnse that B and C initiallJ-  had 
the  same  values (Bo=30 rn.sec.-l, C(,= - 15 rn.src*.-l), 
but  the  dimensions of the region were increased.  The 
width of the  channel  was  taken t'o be 10,000 km.,  equal 
to  the  distance  between  pole  and  equator on the  earth. 
The  wavelength  in  the  zonal  direction was also taken to  
be 10,000 krn., making  the  initial flow stable  according 
to  the  linear  theory (see figs. 2  and 3 ) .  The  initial  per- 
turbation was again  prescribed by sett,ing  &=25 m.scc.-I 
initially, while all  the  other  arnplitudcs were zcro  initially. 

Some  results  from  this  forecast  are  shown  in  figures  18 
and 19. The first (fig. 18)  shows a record of the  strength 
of the  zonal wind in  the  center of the  channel  and a t  
a  distance 0.20 from t,he  wall. The zonal  wind  in the 
center  shows a regular  variation  between 60 m.sec.-l and 
32.5 m.sec." with  a period of slightly  more  than 6 days, 
while the  variation closer to  the wall  is  between -6 
m.sec.-I and  +9 m.sec.-l with  the  same  period.  We find 
again  a  tendency to  divide t,he initial single jet  maxirnunl 
into two  maxima,  because the westerly  wind close to  the 
wall is a t  a maximum at  the same  time as the zonal  wind 

FIGIJRE 18.-Case 3 .  The zonal velocity in the  center of the 
channel  and  at a distance of 0.2 I1 from the wall as a  function of 
time.  Parameters B,=30 In. set.", C,=15 m. set.", E,,= 
Flo=Fr3=0,  p=p15, width 10,000 km., zonal wavelength 10,000 
km. 
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FIGI-RE 19.-Case 3 .  The  zonal  kinetic  energy as a frmct,iorl of time 
over 01112 period  (upper  curve,  right  scale).  The  energy convcr- 
sion between zonal and  eddy  kinetic  energy as a  function of 
t i r r w  ovw  one Feriod (lower curve,  left  scale). 

is a t  a nlinirnum in  the  center of the  channel.  The  energy 
conversion  between  zonal and  eddy  kinetic  energy  is 
plotted  in figure 19 as  a  function of t'irne together  with  the 
time  variation of the zonal kinetic  energy itself over  one 
period  (about 148 hours).  The two  curves  have  this  time 
a very  regular  variation, where the zonal kinetic  energy 
goes to a minimum  equal to  the  value  estimated  from 
equation (6.17) in  the  middle of the  period. 
Case 4: The  initial specifications  for this case were 
Bo=30 m.sec.", C',=--30 m.sec.-l, the  width of the 
channel 10,000 km., and  the  zonal  wavelength 10,000 km. 
We  have  therefore  again chosen a situation where the 
total  zonal  momentum  vanishes.  The  variation of the 
zonal  wind  in  the  center of the channel  and a t  a  distance of 
0 .20 from  the wall is shown in figure 20 as a function of 
t'irne over a 24-day period. The zonal  wind in  the  center 
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FIGURE 20,"Case 4. The  zonal  velocity  in  the  center of the 
channel and a t  a distance of 0.2 D from the wall  as a function of 
time.  Parameters as in  case 3 (fig. 18) except C,= -30 m. sec.3. 

varies  between 60 msec."  and 0 m.sec.-' with  a period of 
5)4 days, while the zonal wind at 0 .20 varies  between-33 
msec."  and  0  rnsec.".  Notice,  that no zonal wind 
exists at 2$$ days  and  at  intervals of 5){ days  thereafter. 
This  picture is consistent  with the curves  in  figure 21 where 
we notice that  the  kinetic  energy of the zonal flow goes to 
zero in  the  middle of the period. 

The charact'eristic  period of  5-6 days which has been 
found  in  these integrations agrees  with the typical  time 
scale found by Thompson [15] in his theory of long- 
period  variat'ions  in  barotropic flow. A further  agreement 
is found  between the  results  obtained  here  and those 
reported by  Charney [4] from a single extended  integration 
of the  barotropic  vort'icity  equation  and  by  Baer [I]. 

Some support' is also found in analysis of atmospheric 
data for  periodicities of this  order of magnitude.  Refer- 
ence is made  to  the  observational  studies  by ;Mintz and 
Kao [IO] who found  a  period of 3-5 days in the convergence 
of the  meridional  transport of Inomenturn a t  certain 
latitudes  during  January 1949. The  st'udy  by  Duggan [6] 
of the meridional  convergence of momentum also shows 
periodicities of t'his order of magnitude. 

The results of the non-linear  integrations can be used 
to obtain  information  about how soon the higher-order 
effects become important.  One  may,  for example,  obt'ain 
this  information  from  curves  giving the energy  conversion 
from  zonal  kinetic  energy to eddy  kinetic energy as a func- 
tion of time  in  the non-linear  cornputat'ion  and  estimated 
from the  linear  theory  including  terms of different  orders. 

Substituting  the expression (3.19) for u (y, t) and (3.18) 
for "b (u' v')/dy in the formula (5.12) for the energy con- 
version we find first  that, 

- 

(6.19) 

The first term on the  right  hand side of (6.19) gives the 
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Frc;r;RE 21."Casc 4. The zonal  kinetic  energy  as a function of 
time  over  one  period  (upper  curve,  right  scale). The energy 
conversion  between x o n d  and  eddy  kinetic  energy  as a function 
of time ovcr one  period (lower curve,  left  scale). 

contribution wllich depends  upon the initial profile u 
(y, O), while the second term  is  independent of the  initial 
profile. Since the nlcridional distribution of the conver- 
gence of Inorrlentum transport, expressed by  the function 
M(y), is a second-order effect,, we may  say  that  the first 
term in {E . K') is of second order, while the  last  term 
is a  fourth-order effect. 

When the expressions (2.9) for u (y, 0) and (3.15) for 
M(y) are  int,roduced in  (6.19) we obtain  after evaluation 
of the  int,egrals 

{E .  K' 1 =2pi2N*B sinh (2pSt) 

- 8pcx4N*2 ~~ sinh (2pSt) . (cosh (2pLXt) - 1). (6.20) 
S 

The following case was selected  for  comparison. The 
zonal  wavelength was chosen to  be 5,000 km.,  the maxi- 
mum nlcridiorlal wavelength  to  be 6,000 km., p= 16X 
10-12rn.-1sec.-1, B=30 n1.  sec.", and  p2=0.  The curve 
without  marks in figure 22 gives the energy conversion in 
t,he  non-linear  c,onlput'ation  as a function of time.  The 
energy  conversion  increases to a maximum, which is 
reached after  approximately 44 hours. The curve  in figure 
22 marked  with circles is the energy  conversion  computed 
fronl  (6.20)  including,  however,  only the first term.  By  a 
comparison of the two  curves we find that,  the curve 
including the second-order effects gives a good estimate of 
the energy  conversion up  to  approximately 24 hours, 
although  the  estimate is slightly  too  high.  When  the 
fourth-order effects are included in  the  evaluation of (6.20), 
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FIGURE 22.-The curve  without  Inarks gives the  energy  couversion 
as a function of time  in a non-linear  calculation  with  the following 
parameters:  zonal  wavelength  5,000  km.,  maximum  nleridional 
wavelength  6,000  km., f?= 16X 10-12 111.-1 see.-], B=30 m.  set.", 
and q* = O .  The  curve  marked  with circles  gives the  energy 
conversion computed  from  the  linear  solution  using  the samc 
parameters  and  including  second-ordrr effects,  while the  curve 
marked  with  squares  also  includes  fourth-order  effects. 

we obtain  the  curve in  figure 22 marked  with  squares. 
This  curve gives a very good estimate for  a little longer 
period than  the second-order  curve, but then  rapidly 
shows an  underestimate.  The  main  result of the inclu- 
sion of the  fourth-order tern1 in (6.20) is,  however, that 
this  term actually  predicts  that  the energy conversion 
will reach  a  maximum. The main conclusion fron~ figure 
22 is that  the higher-order effects become important  after 
about 1 day. 

7. SUMMARY 

The first  sections of this  paper  contain a stability 
investigation of the  divergent,  one-parameter model. 
The main conclusion is that  the  introduction of a  diver- 
gence term  into  the model  tends to reduce  the  instabilities 
present  in the non-divergent  model. The second-order 
effects of the  disturbances on the profile of the zonal 
wind are  investigated. I t  is found that  the unstable 
barotropic  disturbances  tend  to  cause a decrease of the 
zonal winds in  the  center of t’he  channel  and an increase 
of the mean  zonal  winds to  the  north  and south. 

A simple  non-linear  barotropic  model  containing only 
a few wave  components is investigated  in the next  sections 
through  integrations  over extended time periods. The 
changes  in the profile of the zonal  wind, the energy con- 
version between  kinetic  energy of the mean flow and  the 
eddies, and  the  time periodicities of the flow are  investi- 
gated.  Fluctuations of the  order of 2 days  are  foundin 
initially  unstable flow, while the large-scale stable flow 
pattern shows periods of the order of 6 days. 
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